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Microbiological Aspects of Ozone
Applications in Food: A Review
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ABSTRACT: Ozone is a powerful antimicrobial agent that is suitable for application in food in the gaseous and
aqueous states. Molecular ozone or its decomposition products (for example, hydroxyl radical) inactivate microor-
ganisms rapidly by reacting with intracellular enzymes, nucleic material and components of their cell envelope,
spore coats, or viral capsids. Combination of ozone with appropriate initiators (for example, UV or H

2O2) results in
advanced oxidation processes (AOPs) that are potentially effective against the most resistant microorganisms;
however, applications of AOPs in food are yet to be developed. When applied to food, ozone is generated on-site and
it decomposes quickly, leaving no residues. Ozone is suitable for decontaminating produce, equipment, food-
contact surfaces, and processing environment.
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Introduction

THE FOOD INDUSTRY IS CURRENTLY IN NEED OF INNO-
vative processing technologies in order to meet consum-

ers’ demand of fresher and safer ready-to-eat products.
High pressure processing, pulsed electric field, and high in-
tensity pulsed light are some of these emerging technologies.
Attention is now focused on ozone as a powerful sanitizer
that may meet expectations of the industry, approval of the
regulatory agencies, and acceptance of the consumer. Regu-
latory agencies in the United States have been hesitant in the
past to approve the use of ozone for treatment of drinking
water and direct food applications. Currently, there are more
than 3000 ozone-based water treatment installations all over
the world and more than 300 potable water treatment plants
in the United States (Rice and others 2000). This widespread
application is a clear indication of the efficacy and usefulness
of ozone. A petition submitted in August 2000 to the Food
and Drug Administration (FDA) for approval of ozone as a
direct food additive for the treatment, storage, and process-
ing of foods in gas and aqueous phases has been recently ac-
cepted (Federal Register 2001).

Major advantages of ozone made it one of a few top can-
didate technologies attracting the attention of the food in-
dustry. Ozone is one of the most potent sanitizers known.
Excess ozone auto-decomposes rapidly to produce oxygen,
and thus it leaves no residues in food. The sanitizer is active
against all forms of microorganisms at relatively low concen-
trations. The rapid developments in this field—appearance
of a new body of knowledge and potential approval of ozone
as a direct food additive by the U.S. government—justify the
present review of various aspects of ozone-microorganisms
interactions. Food processors who are introducing ozone in
their facility and researchers who are exploring the feasibility
of ozone use in food processing are in need of relevant and
concise information about this sanitizer. This review article
should address these needs.

Physicochemical properties of ozone
Ozone (O3) results from the rearrangement of atoms

when oxygen molecules are subjected to high-voltage elec-
tric discharge. The product is a bluish gas with pungent odor

and strong oxidizing properties (Horvath and others 1985).
Physicochemical properties of ozone are closely related to
its efficacy, and thus these properties will be discussed.

Solubility of ozone in water
The gas does not appreciably react with water; therefore

it forms a true physical solution (Horvath and others 1985).
Dissolution of gasses that are partially soluble in water (for
example, ozone) follows Henry’s law which states that the
amount of gas in solution, at a given temperature, is linearly
proportional to the partial pressure of the gas. Consequently,
saturation concentration (Cs) of a dissolved ozone in water
under thermodynamic ideal conditions follows this equation
(Bablon and others 1991a).

Cs = bM × Pg

where Cs: kg O3/m3 water; b (absorption coefficient): vol-
ume of ozone (expressed at NTP) dissolved per unit volume
of water (at a given temperature) in the presence of equili-
brating ozone at 1-atm pressure; M: mass volume of ozone,
kg/m3, at NTP (2.14 kg/m3);  Pg: partial pressure of ozone in
the gas phase

Solubility of gasses can be compared if their â values are
known. Solubility in water is greater for ozone than for nitro-
gen and oxygen; â values are 0.64, 0.0235, and 0.049, respec-
tively. Ozone, however, is less soluble in water than are car-
bon dioxide (b = 1.71) and chlorine (b = 4.54).

Dissolution of ozone in water also can be expressed in a
more practical term, the solubility ratio (Sr).

mg/L  O3  in water
Sr = ————————————

mg/L O3 in the gas phase

Solubility ratio for ozone increases as the temperature of
water decreases (Bablon and others, 1991a). These authors
showed a negative logarithmic relationship between Sr and
water temperature in the range of 0.5 °C to 43 °C.

In addition to pressure and temperature, which directly
affect the solubility, other parameters practically influence
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the dissolution of ozone in water. When a solution is pre-
pared by bubbling ozone in water, smaller bubble sizes result
in larger surface area of contact which increases the solubili-
ty (Katzenelson and others 1974). According to these au-
thors, an optimum dissolution of ozone in water occurs
when bubbles are 1 to 3 mm in dia. The flow rate of ozone
and contact time affect the transfer of the gas to water. Ap-
propriate mixing or turbulence increases bubble contact and
solubilization in water (Katzenelson and others 1974). Design
of ozone-water contactors, in general, greatly affects the rate
of solubilization (Schulz and Bellamy 2000).

Purity and pH of water greatly affect the rate of ozone
solubilization. J-G Kim (1998) bubbled gaseous ozone (1
mM) into double distilled, deionized or tap (from two sourc-
es) water. Ozone gas dissolved faster in deionized and dis-
tilled water than in tap water. Higher maximum ozone con-
centration was also obtained in the water from the former
two sources. The pH values, measured before ozonation,
were 5.6 and 5.9 for deionized and distilled water, respective-
ly, and 8.23 and 8.39 for tap water from the two sources. The
high pH of tap water may have destabilized ozone, and thus
the apparent rate of solubilization decreased. In addition, tap
water may contain organic matter that consumes ozone.
Presence of minerals in water may also catalyze ozone de-
composition (Hoigné and Bader 1985). Therefore, solubility
of ozone increases when purity of water increases.

Stability of ozone
Ozone is relatively unstable in aqueous solutions. It de-

composes continuously, but slowly, to oxygen according to a
pseudo first-order reaction (Tomiyasu and others 1985). The
half-life of ozone in distilled water at 20 °C is generally con-
sidered to be 20 to 30 min. However, Wynn and others (1973)
found that ozone has a half-life of 165 min in distilled water
at 20 °C and Wickramanayake (1984) reported a shorter half-
life (2 to 4 min) in aqueous solution at pH 7.0 and 25 °C.
Wickramanayake (1984) attributed this short half-life to the
mechanical stirring that kept the reactor’s contents com-

Figure 1—Ozone decomposition reactions. (O3) ozone.
(.O2

–) superoxide radical ion; (HO2
.) hydroperoxide radical,

(OH.) hydroxyl radical.

pletely mixed.
The pH greatly affects the stability of ozone in aqueous

solutions. J-G Kim (1998) added ozonated water, having dif-
ferent concentrations, into phosphate buffers (0.01 M) with
pH 5.0 to 9.0, mixed for 15 s and measured the concentra-
tion of ozone using the indigo method. Stability of ozone in
solution was the greatest when pH was 5.0. Ozone stability
decreased as pH increased, and no ozone was detected in
buffers with pH 9.0.

Decomposition of ozone follows first-order kinetics with
respect to both ozone molecule and hydroxide ion.

–d[O3]/dt = k[O3][OH–]

According to Staehelin and Hoigné (1985), decomposition
of ozone includes initiation, promotion, and inhibition reac-
tions (Figure 1).

(1) Initiation is the rate-limiting step which leads to for-
mation of free radicals; these are the superoxide radical ion
(~O2

–) and its hydrogenated form, the hydroperoxide radical
(HO2

~).

k = 70 mole–1 sec–1

O3 + OH– ———————————s HO~2 + ~O2
-

[pKa= 4.8]

~O2
– + H+

Formation of these radicals will lead to the generation of
the highly reactive hydroxyl radical (~OH) and consumption
of an ozone molecule (Figure 1). The ozonide radical ion (
~O3

-) is formed as an intermediate reaction product. Factors
that enhance this stage of ozone decomposition (initiators)
include hydroxyl ions, some cations such as Fe2+, organic
compounds such as glyoxylic acids, and ultraviolet radiation
(UV) at 253.7 nm.

(2) Promotion reactions regenerate the hydroperoxide
and superoxide radicals, as shown in the following example.

k = 2.0 × 109 mole–1 sec–1

O3 + ~OH —————————————s HO~4

k = 2.8 × 104 sec-1

a—–——————––———~O2
– + H+—–——————––———s HO~2 + O2

Promotors include formic acid, glyoxylic acids, primary
alcohols, and aryl groups.

(3) Inhibition refers to reactions leading to consumption
of hydroxyl radical without regenerating the superoxide radi-
cal ion

k = 4.2 × 108  mole–1 sec–1
~OH + HCO3

– —–——————––———s OH– + HCO~3

Inhibitors include bicarbonate, carbonate, tertiary alco-
hols, and alkyl groups.

In practical terms, stability of ozone in aqueous solutions
depends on the source of water. Water used in food process-
ing or drinking usually contains readily oxidizable organic
and inorganic substances. These substances may react rapid-
ly with ozone, considerably decreasing its half-life. J-G Kim
(1998) bubbled ozone in distilled, deionized, HPLC-grade
and tap water from two sources, and phosphate buffer
(0.5M, pH 7)  to attain 0.10 to 0.15 absorbance at 258 nm
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others 1968), temperature partly determines the rate at
which the disinfectant diffuses through the surfaces of mi-
croorganisms and its rate of reaction with the substrate. At
constant reagent concentration, increasing the temperature
by 10 °C increases the reaction rate with the substrate by a
factor of 2 or 3. In the case of ozone, however, as tempera-
ture increases ozone becomes less soluble and less stable,
but the ozone reaction rate with the substrate increases. As
the temperature increased from 0 °C to 30 °C, the rate of in-
activating Giardia cysts increased (Wickramanayake and
others 1984). However, Kinman (1975) reported that when
bacteria were treated with ozone at 0 °C to 30 °C, treatment
temperature had virtually no effect on the disinfection rate.
The researcher related this observation to the decrease in
solubility and increase in the decomposition and reactivity of
ozone as temperature increases. Achen and Yousef (2001)
treated Escherichia coli-contaminated apples with ozone at
4, 22, and 45 °C, and observed that counts of the bacterium
on the surface decreased 3.3, 3.7, and 3.4 log10-units, respec-
tively. Statistical analysis showed no significant differences
among the three treatments (P > 0.05). The residual ozone
concentration was greatest at the lowest temperature (4 °C)
and decreased with increasing temperature. It appears that
when treatment temperature increased, the increase in
ozone reactivity compensated for the decrease in its stability,
and thus no appreciable change in efficacy was observed. On
the contrary, J-G Kim (1998) observed that ozone reduced
more microbial contaminants when it was applied at higher
than the refrigeration temperatures.

pH value. Under constant residual ozone concentrations,
the degree of microbial inactivation remained virtually un-
changed for pH’s in the range of 5.7 to 10.1 (Farooq and oth-
ers 1977). However, efficacy of ozone seems to decrease at
alkaline pH for rotaviruses (Vaughn and others 1987) and po-
liovirus type 1 (Harakeh and Butler 1985). Ozone is more sta-
ble at low than at high pH values, as indicated earlier. Inacti-
vation of microorganisms is mostly through reaction with
molecular ozone when the pH is low. Ozone decomposes at
high pH values and the resulting radicals contribute to its ef-
ficacy. The relative importance of these two inactivation
mechanisms may vary with the microorganism and treat-
ment conditions (for example, presence of ozone-demand-
ing contaminants).

Ozone-consuming compounds. Presence of organic sub-
stances with high ozone demand may compete with micro-
organisms for ozone. Viruses and bacteria associated with
cells, cell debris, or feces are resistant to ozone, but purified
viruses are readily inactivated with the sanitizer (Emerson
and others 1982). Similar results have been found in our lab-
oratory for ozone inactivation of rotavirus in suspension
comparative to 1-h adsorbed virus to the MA 104 cell mono-
layers (Khadre and Yousef 2001c). Hence, the presence of or-
ganic matter in water intended for use in ozone-associated
food processing is highly undesirable. Furthermore, unwant-
ed by-products from ozone action on organic compounds
may shorten the shelf-life, change the organoleptic quality,
or jeopardize the safety of the final product.

Determination of ozone concentrations
Physical, physicochemical, and chemical methods have

been used for determination of ozone. Physical methods
measure direct absorption in the UV, visible, or infrared re-
gion of the spectrum. Physicochemical methods are depen-
dent upon effects such as heat or chemiluminescence caused
by the reaction. Chemical methods quantitate the products

Microbiological aspects of ozone . . .

(A258). Ozone decomposition rate was monitored during
storage at 25 °C for 8 min. Concentration of ozone decreased
during storage, but rates of decrease were greater in buffer
and tap water than in distilled, deionized, and HPLC-grade
water. These data indicate that ozone degrades faster in buff-
er and tap water than in purer water. It is apparent that high
pH  and presence of ozone-demand materials enhance de-
composition of ozone.

Reactivity of ozone
The ozone molecule acts as dipole with electrophilic and

nucleophilic properties. Organic and inorganic compounds
in aqueous solutions react with ozone in one of two path-
ways (Staehelin and Hoigné 1985):

(a) Direct reaction of organic compound (M) with molec-
ular ozone.

O3 + M ——————s Mox

(b) Decomposition of ozone in water into a radical (for
example,  OH) which reacts with the compound (M).

OH– M
O3 ——————s OH ——————s Mox

Molecular ozone reactions are selective and limited to un-
saturated aromatic and aliphatic compounds. Ozone oxidiz-
es these compounds through cycle-addition to double bonds
(Bablon and others 1991a). Oxidation of sulfhydryl groups,
which are abundant in microbial enzymes, may explain rapid
inactivation of microorganisms and bacterial spores by
ozone.

Ozone reacts with polysaccharides slowly, leading to
breakage of glycosidic bonds and formation of aliphatic acids
and aldehydes (Bablon and others 1991a). Reaction of ozone
with primary and secondary aliphatic alcohols may lead to
formation of hydroxy-hydroperoxides, precursors to hy-
droxyl radicals, which in turn react strongly with the hydro-
carbons (Anbar and Neta 1967). Perez and others (1995)
showed that N-acetyl glucosamine, a compound present in
the peptidoglycan of bacterial cell walls and in viral capsids,
was resistant to the action of ozone in aqueous solution at
pH 3 to 7. Glucosamine reacted relatively fast with ozone,
but glucose was relatively resistant to degradation. This ob-
servation may explain, at least in part, the higher resistance
of gram-positive bacteria compared to gram negative ones;
the former contains greater amounts of peptidoglycan in
their cell walls. The action of ozone on amino acids and pep-
tides is significant especially at neutral and basic pH. Ozone
attacks the nitrogen atom or the R group or both.

Ozone reacts slowly with saturated fatty acids. Unsaturat-
ed fatty acids are readily oxidized with ozone and cycle-addi-
tion products are formed. Ozone reacts quickly with nucleo-
bases, especially thymine, guanine, and uracil. Reaction of
ozone with the nucleotides releases the carbohydrate and
phosphate ions (Ishizaki and others 1981).

Factors altering reactivity and antimicrobial efficacy.
A factor such as treatment temperature affects solubility,

stability, and reactivity of ozone differently. Consequently, it
is difficult to predict the influence of this factor on the effica-
cy of ozone in real applications. Factors that affect these in-
terrelated parameters simultaneously will be discussed.

Temperature. The rate of destruction of microorganisms
by a disinfectant generally increases with increasing temper-
ature. According to the van’t Hoff-Arrhenius theory (Fair and
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released when ozone reacts with a chemical reagent such as
potassium iodide.

The iodometric method has been approved by the Inter-
national Ozone Association (Gordon and Grunwell, 1983).
Ozone oxidizes iodide ion, releasing iodine; the latter is then
titrated with sodium thiosulfate to a starch endpoint. This
method measures not only ozone, but also all other oxidiz-
ing species resulting from ozone decomposition in solutions;
for example, ~O3

–,  HO2~, and ~O2
–. Hence, measurement of

residual ozone cannot be accurately done by the iodometric
method.

The commonly used indigo method (Bader and Hoigné
1981) is precise, fast, and sensitive (lowest detection level is
0.005 mg/mL). The indigo reagent reacts additively with the
carbon-carbon double bond of sulfonated indigo dye caus-
ing its decolorization and the resulting change in color is de-
termined spectrophotometrically. Ozone measurement by
the indigo method is not compromised by the presence of
hydrogen peroxide, organic peroxides, manganous ions, and
oxidized species in drinking water. Compared to the iodo-
metric method, the indigo method is more suitable for mea-
suring residual ozone.

Several manufacturers produce instruments that measure
ozone by determining the amount of UV light absorbed.
Gaseous ozone absorbs short-UV wavelengths with a maxi-
mum absorption at 253.7 nm and the gas-phase absorption
coefficient of 3000 6 30 mole–1 cm–1 at 273 °K and 1 atm
(Gordon and Grunwell 1983). Calorimetric methods of ozone
measurement depend on the decomposition of ozone in the
presence of a catalyst producing heat. Instruments using am-
perometric methods to measure the oxidation-reduction po-
tential of ozone are available commercially.

Kinetics of microbial inactivation by ozone
Ozone is a strong, broad-spectrum antimicrobial agent

that is active against bacteria, fungi, viruses, protozoa, and
bacterial and fungal spores. There is a little agreement, how-
ever, among researchers regarding the relative sensitivity of
different microorganisms to ozone. Additionally, reported
sensitivity of a single microorganism varies among studies.
Strain of the microorganism, age of the culture, density of
the treated population, presence of ozone-demanding medi-
um components, method of applying ozone (that is, gas bub-
bles, or uniform aqueous solution), accuracy of ozone mea-
suring procedures and devices, and method of measuring
antimicrobial efficacy (for example, single point determina-
tions in contrast to systematic kinetic studies) are some of
the confounding factors that make comparison among dif-
ferent studies unfeasible. Based on our experience, sensitivi-
ty of bacteria to aqueous ozone ideally is tested as follows;
(1) grow cells to late exponential or early stationary phases,
(2) separate and wash cells from the growth medium, (3) sus-
pend washed cells uniformly in ozone demand-free medium,
for example, pure water, to attain 107 to 108 CFU/mL, (4) ap-
ply a dose of ozone that kills a significant portion of the pop-
ulation (~2 to 3 log10-units) but without leaving residual
ozone in the treatment mixture, (5) measure cell viability at
the end of the treatment, and (6) correlate the population in-
activated with the ozone dose. If this procedure is carefully
executed, results may be used to estimate the number of
ozone molecules sufficient to inactivate a single bacterial cell
(nz). Relative sensitivity of different microorganisms or the
same microorganism under different cultural, physiological,
or experimental conditions may be reliably determined by
comparing their nz values. Using a similar approach, Kim

and Yousef (2000) estimated nz for Leuconostoc mesenteroides
at 109. In an earlier study, Finch and others (1988) found that
3 × 108 molecules of ozone were used to inactivate each cell
of E. coli.

The procedure just described can be modified to estimate
inactivation rate {D(log10 CFU/mL)/(D time)} in response to
a given ozone concentration. The modification replaces
steps (v) and (vi) as follows: (v) at suitable treatment time in-
tervals, quench the reaction and measure cell viability, and
(vi) construct the survivor’s plot. The rate of microbial inacti-
vation {D(log10 CFU/mL)/(D time)} is calculated using the
linear plot or the steepest slope on the survivor curve. The
negative reciprocal of this inactivation rate, known as deci-
mal reduction time or D-value, is a useful term in comparing
resistance to ozone of different microorganisms or of the
same microorganism under different conditions. Microbial
inactivation by ozone does not seem to produce linear survi-
vor plots (Figure 2). Finch and others (1988), Kim and Yousef
(2000) and many other researchers observed a tailing in
these plots. Tailing of heat inactivation survivor plots are
normally attributed to poorly designed experiments or to in-
accuracies in measurements, but these causes do not neces-
sarily explain the tailing in ozone survivor plots. While heat
and other physical factors are applied constantly during the
course of the treatment, ozone is commonly applied as a sin-
gle dose at the beginning of the treatment; therefore, it may
be reasonable to predict the nonlinearity in the latter case.
These nonlinear plots, nevertheless, may be used to measure
initial inactivation rates and calculate the corresponding D-
values. Kim and Yousef (2000) applied ozone to bacterial cell
suspensions in a continuous, rather than a batch, mode and
obtained survivor plots that are linear for 5 to 20 s of the
treatment. This study proved that ozone reacts with micro-
organisms rapidly, and a nonlethal threshold concentration

Figure 2—Inactivation of bacterial vegetative cells and
endospores (Alicyclobacillus acidocaldarius) and mold
(Neosartorya fischeri) and yeast (Zygosaccharomyces bailii)
ascospores when aqueous suspensions containing 6.4 × 106

to 1.5 × 107 CFU/mL, initially, were treated with ozone in a
continuous reactor (Kim and others 2001). An ozone dose
(mg gas ozone/mL sample) = ozone concentration in gas
(mg/L) × flow rate (mL/min) × treatment time (min)/volume
of spore suspension (mL). No: CFU/mL in untreated sample;
N: CFU/mL in treated sample.
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is reached quickly in a batch treatment. Continuous treat-
ments, coupled with rapid sampling techniques, allow a rela-
tively accurate determination of D-values.

Determination of microbial inactivation kinetics in a con-
tinuous treatment system may be simplified by measuring
ozone dose as C.T value. Based on this concept, C.T is a mea-
sure of disinfectant concentration (C) multiplied by the time
(T) required to achieve a given inactivation level of a micro-
organism. It was originally introduced by Watson (1908) as a
solution for the occasional absence of a straight line in disin-
fectant log plots. However, Watson emphasized the impor-
tance of a constant disinfectant concentration during the
time of contact. Although the C.T concept provides an excel-
lent measure of ozone doses, accurate determination of C.T
value is difficult in the case of ozone due to its instability and
short half-life. To overcome this problem, some authors
used residual ozone concentration at the end of the contact
period as an estimate of “C” in the “C.T” term; this approach
obviously results in inaccurate dose measurement. Gyurek
and others (1997) questioned the validity of the C.T concept.
They stipulated that extrapolation of a C.T product at a high
concentration for chlorine to low concentration conditions
is inappropriate because of the modeling discontinuity that
may exist between high and low concentrations.

Mechanism of microbicidal action of ozone
Inactivation of bacteria by ozone is a complex process be-

cause ozone attacks numerous cellular constituents includ-
ing proteins, unsaturated lipids and respiratory enzymes in
cell membranes, peptidoglycans in cell envelopes, enzymes
and nucleic acids in the cytoplasm, and proteins and pepti-
doglycan in spore coats and virus capsids. Some authors
concluded that molecular ozone is the main inactivator of
microorganisms, while others emphasize the antimicrobial
activity of the reactive by-products of ozone decomposition
such as  ~OH,  ~O2

–, and HO~3
  (Chang 1971; Harakeh and

Butler 1985; Glaze and Kang 1989; Bablon and others 1991b;
Hunt and Marinas 1997).

Cell envelopes. Ozone may oxidize various components
of cell envelope including polyunsaturated fatty acids, mem-
brane-bound enzymes, glycoproteins and glycolipids leading
to leakage of cell contents and eventually causing lysis (Scott
and Lesher 1963; Murray and others 1965). When the double
bonds of unsaturated lipids and the sulfhydryl groups of en-
zymes are oxidized by ozone, disruption of normal cellular
activity including cell permeability and rapid death ensues. In
our laboratory, Dave (1999) found that treatment of Salmo-
nella enteritidis with aqueous ozone disrupted the cell
membranes as seen in transmission electron micrographs
(Figure 3). However, Komanapalli and Lau (1996) found that
short-term exposures of E. coli K-12 to ozone gas compro-
mised the membrane permeability but did not affect viabili-
ty, which progressively decreased with longer exposure.

Bacterial spore coats. Foegeding (1985) found that Bacil-
lus cereus spores with coat proteins removed were rapidly
inactivated by ozone, compared to intact spores. The re-
searcher concluded that the spore coat is a primary protec-
tive barrier against ozone. Recently, Khadre and Yousef
(2001b) found that spores of Bacillus subtilis treated with
aqueous ozone showed heavily disrupted outer spore coats
(Figure 3).

Enzymes. Several authors referred to enzyme inactivation
as an important mechanism by which ozone kills cells. Sykes
(1965) reported that chlorine selectively destroyed certain
enzymes, whereas ozone acted as a general protoplasmic ox-

idant. Ingram and Haines (1949), in view of their finding gen-
eral destruction of the dehydrogenating enzyme systems in
the cell, proposed that ozone kills E. coli by interfering with
the respiratory system. Takamoto and others (1992) ob-
served that ozone decreased enzyme activity in E. coli at a
greater degree in case of cytoplasmic â-galactosidase than in
case of the periplasmic alkaline phosphatase. Inactivation of
enzymes by ozone is probably due to oxidation of sulfhydryl
groups in Cysteine residues (Chang 1971).

Nucleic material. Reaction of aqueous ozone with nucle-
ic acids in vitro supports the notion that it may damage nu-
cleic material inside the cell. Ozone modified nucleic acids in
vitro , with thymine being more sensitive than cytosine and
uracil (Scott 1975; Ishizaki and others 1981). In another study,
ozone opened the circular plasmid DNA and reduced its
transforming ability, produced single- and double-strand
breaks in plasmid DNA (Hamelin 1985), and decreased tran-
scription activity (Mura and Chung 1990). Studying E. coli,
l’Herault and Chung (1984) found that ozone may induce
mutations. However, other investigators did not detect any
mutagenic effect of ozone on Salmonella spp. (Victorin and
Stahlberg 1988). Compared to other known mutagens, ozone
was found to be a weak mutagen on Saccharomyces cerevisi-

Figure 3—Disruption of Salmonella enteritidis outer mem-
brane (Dave 1999) and the outer coat of Bacillus subtilis
spores (Khadre and Yousef 2001b) after treatment with
sublethal levels of ozone as seen by the transmission elec-
tron microscope. (A and B) S. enteritidis; (C and D) B. sub-
tilis, before and after ozone treatment, respectively.
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ae (Dubeau and Chung 1982). The effect of ozone on viral
nucleic acids is discussed in a later section.

Viruses. Sproul and Kim (1980) and CK Kim and others
(1980) found that aqueous ozone inactivated both f2 and T4
bacteriophages by attacking capsid protein, with liberation
and inactivation of the nucleic acid. The RNA from f2 bacte-
riophage was partially inactivated prior to release from the
capsid. They suggested that ozone breaks the protein capsid
into subunits liberating RNA and disrupting virus adsorption
to the host pili, and that the RNA may be secondarily inacti-
vated. The DNA released from T4 bacteriophage was rapidly
inactivated by ozone at about the same rate as that in the in-
tact phage. CK Kim and others (1984 ) confirmed the results
of Sproul and Kim (1980) about bacteriophage T4; they
found that ozone randomly destroyed the head, collar, con-
tractile sheath, end plate, and tail fibers and liberated the
DNA from the head.

Yoshizaki and others (1988) found that aqueous ozone
caused the coat proteins subunits of tobacco mosaic virus
(TMV) to aggregate with each other and cross-link with the
viral RNA. Despite their observation of a good correlation
between loss of infectivity and decrease of recovery of viral
RNA, Yoshizaki and others (1988) and Shriniki and others
(1988) concluded that the major cause of TMV inactivation
by ozone was the inability of the treated virus to uncoat. Roy
and others (1981) found that ozone altered two of the four
polypeptide chains in the poliovirus protein coat. They, how-
ever, attributed the inactivation of the virus to the damage in
its RNA by ozone. The observation by Herbold and others
(1989) that 0.38 mg/mL aqueous ozone was needed for com-
plete inactivation of hepatitis A virus (HAV) and only 0.13
mg/mL for complete inactivation of poliovirus may support
the hypothesis that damage to viral envelopes is the main
cause of inactivation of viruses by ozone. Enveloped viruses
such as HAV are expected to be much more resistant to
ozone compared to nonenveloped viruses such as poliomy-
elitis.

Efficacy of ozone
Efficacy of ozone is demonstrated more readily when tar-

geted microorganisms are suspended and treated in pure
water or simple buffers (with low ozone demand) than in
complex systems such as food. The simplicity of low-ozone-
demand aqueous environment makes it possible to compare
ozone efficacy against microorganisms within the same
study, and occasionally among different studies. Ozone also
may be compared with other sanitizers when experiments
are done in the simple treatment environments just indicat-
ed, but differences in experimental designs, treatment condi-

tions, and microbial strains tested should be considered.
Therefore, in the following discussion we will compare effi-
cacies with consideration to the factors just indicated. This
discussion will be limited to bacteria and viruses since they
were more extensively investigated than other groups of mi-
croorganisms.

Inactivation spectrum
Bacteria. Studies summarized in Table1 show that 0.12 to

3.8 mg/mL aqueous ozone inactivated gram-positive bacteria
by 1 to 7 log10 CFU/mL. When gram-negative bacteria were
treated with 0.004 to 6.5 mg/mL aqueous ozone, their popu-
lations decreased 0.5 to 6.5 log10 CFU/mL (Table 2). It may
not be possible to compare ozone sensitivity of gram-posi-
tive and gram-negative bacteria using summaries of data in
Tables 1 and 2; therefore, studies that directly compare these
two categories will be presented. Sobsey (1989) reviewed
studies to inactivate health-related microorganisms in water
by several disinfectants and concluded that gram-positive
bacteria, including S. aureus and Bacillus spp., and the My-
cobacteria were more resistant than were gram-negatives.
Lee and Deniniger (2000) observed the dominance of gram-
positive bacteria among the surviving microorganisms in
ozonated drinking water. When gram-positive and gram-neg-
ative bacteria were compared in side-by-side experiments,
however, variable results were obtained. Restaino and others
(1995) studying a group of food-related microorganisms, ob-
served that gram-negative bacteria were substantially more
sensitive to ozone in pure water than were the gram-positive
ones including L. monocytogenes. Kim and Yousef (2000) and
J-G Kim and others (1999b) treated foodborne spoilage and
pathogenic bacteria with ozone under identical conditions
and found results inconsistent with the previous conclusion.
Resistance of bacteria tested in this study followed this de-
scending order: Escherichia coli O157:H7, Pseudomonas flu-
orescens, Leuconostoc mesenteroides, and Listeria monocyto-
genes.

Ozone is generally more effective against vegetative bac-
terial cells than bacterial and fungal spores. In our laborato-
ry, J-G Kim and others (2001) studied inactivation kinetics of
different microorganisms that commonly spoil fruit juices
(Figure 2). Results of this study show that Alicyclobacillus
acidocaldarius vegetative cells and Zygosaccharomyces bailii
ascospores were inactivated rapidly with aqueous ozone.
Spores of A. acidocaldarius were the most resistant to
ozone, and survivor’s plot exhibited both a shoulder and a
tail. Mold spores (Neosartorya fischeri) were intermediate in
resistance to ozone, and tailing of survivor plots was appar-
ent. Khadre and Yousef (2001b) measured ozone efficacy
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Table1—Inactivation of gram-positive bacteria by ozone in ozone demand-free water

Treatment Conditions

Log 10-units
Bacterium Ozone ( mmmmmg/mL) Time (min) pH T emp. (°C) decreased References

Bacillus megaterium 0.19 5 28 > 2.0 Broadwater and others 1973
B. cereus 0.12 5 28 > 2.0 Broadwater and others 1973
Leuconostoc Mesenteroides 0.3 to 3.8 0.5 5.9 25 1.3 to ~7 Kim and Yousef 2000
Listeria monocytogenes 0.2 to 1.8 0.5 5.9 25 0.7 to ~7 Kim and Yousef 2000
L. monocytogenes 0.1a 10 7.2 25 60 to 70%b Lee and others 1998
Mycobacterium fortuitum 0.23 to 0.26 1.67 7.0 24  1.0 Farooq and Akhlaque 1983
S. aureus 0.3 to 1.97 10 4 to 6 Lezcano and others 1998
S. aureus 0.25 7.0 25 > 2.0 Burleson and others 1975
aPhosphate buffer
bPer cent injured cells
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against spores of 8 Bacillus spp. B. stearothermophilus,
which is known for high resistance to heat, also possessed
the highest resistance to ozone among the species tested.

Viruses. A limited number of studies on inactivation of vi-
ruses with ozone have been published. Researchers (Table3)
tested ozone concentrations in the range of 0.1 to 15.9 mg/
mL against 8 different viruses; the treatment caused destruc-
tion of 0 to 7 log10-units. This may indicate that viruses are
comparable to bacteria in sensitivity to ozone. Sobsey (1989),
however, concluded that viruses are generally more resistant
than vegetative bacteria and that bacteriophages are the
most sensitive to ozone among the viruses tested. Other re-
searchers (CK Kim and others 1980; Hall and Sobsey 1993)
also reported the sensitivity of the bacteriophages MS2, and
f2 to ozone. Based on the limited studies in Table3, it may be
concluded that bacteriophages are the least resistant to
ozone, followed by polioviruses, whereas human rotavirus
was the most resistant to the sanitizer. This conclusion is in
agreement with those reports by Herbold and others (1989)

and Hall and Sobsey (1993).

Combination treatments for increased efficacy
Advanced oxidation processes. Advanced oxidation pro-

cesses (AOPs) are processes designed to generate highly re-
active intermediates, particularly the hydroxyl radical (~OH),
for treatment of recalcitrant organic compounds in water.
Among the AOPs are ozonation at high pH, H2O2/O3 pro-
cesses and UV photolysis of H2O2 (Arselan and others 1999).
Hydrogen peroxide in aqueous solutions partially dissociates
to hydroperoxide anion (HO2

-) which is highly reactive with
ozone (Taube and Bray 1940).

H2O2 + H2O ↔ HO2
– + H3O+

The hydroperoxide ions consumed by ozone are quickly
replaced by shifting the equilibrium in the above reaction to
the right. Hence, very small concentrations of H2O2 should
be effective in initiating ozone decomposition.

Microbiological aspects of ozone . . .

Table3—Inactivation of viruses by ozone in water

Treatment Conditions

Log 10-units
Virus Ozone ( mmmmmg/mL) Time (min) pH T emp. (°C) decreased References

Bacteriophage f2 0.09 to 0.8a 0.08 7.0 25 5.0 to 7.0 Kim and others 1980
Bacteriophage MS2 0.6b 0.3 6.9 22 2.96 Finch and Fairbairn 1991
Bacteriophage MS2 0.3 to 0.4b 0.08 6 to 10 3 to 10 6.0 Hall and Sobsey 1993
Hepatitia A virus 0.3 to 0.4b 0.08 6 to 10 3 to 10 3.9 Hall and Sobsey 1993
Hepatitia A virus 0.25b 0.02 7.2 20 2.7 Herbold and others 1989
Hepatitis A virus 1.0b 6 to 8 4 5.0 Novotny and Strout 1990
Poliomyelitis virus 0.3 residual. 4.0 4.0 Coin and others 1967
Poliovirus type 1 1 to 10 (initial)a

0.6 (residual) 5 4.0 Mitsumi 1989
Poliovirus type 1 0.3 residuala < 0.14 2.0 Katzenelson and others 1974
Polioviris type 1 0.23 to 0.26a 0.5 2.0 Farooq and Akhlaque 1983

residual
Poliovirus type 1 (Mahoney) 0.23 to 0.26a 1.67 7.0 24 2.5 to 3.0 Farooq and Akhlaque 1983
Poliovirus type 3 0.6b 0.3 6.9 22 1.63 Finch and Fairbairn 1991
Rotavirus human 0.1 to 0.3b 6.0 6-8 4 3.0 Vaughn and others 1987
Rotavirus SA 11 simian 0.1 to 0.25b 6-8 6-8 4 3.0 Vaughn and others 1987
Rotavirus Wa human ATCC 2.1 to 4.2 1.0 22 0.0 to 1.0 Khadre and Yousef (2001c)
Rotavirus Wa human 1.9 to 15.9 1.0 22 1.0 to 5.0 Khadre and Yousef (2001c)
Wooster

Vesicular stomatitis virus 0.25 7.0 25 > 2.0 Burleson and others 1975
aO3 demand-free water
bPhosphate buffer

Table2—Inactivation of gram-negative bacteria by ozone in water

Treatment Conditions

Log 10-units
Bacterium Ozone ( mmmmmg/mL) Time (min) pH T emp. (°C) decreased References

Escherichia coli 0.065a 0.5 3.5 Katzenelson and others 1974
E. coli 0.004 to 0.8b 0.5 to 2.0 6.9 0.5 to 6.5 Finch and others 1988
E. coli 0.19a 5 28 > 2.0 Broadwater and others 1973
E. coli 0.23 to 0.26a 1.67 7.0 24  4.0 Farooq and Akhlaque 1983
E. coli 0.53b 0.1 6.8 1  2.0 Fetner and Ingols 1956
E. coli O157:H7 0.3-1.0a < 0.5 5.9 25 1.3-3.8 Kim and Yousef 2000
Legionella 0.32a 20 7.0 24 > 4.5 Edelstein and others 1982
peumophila 0.47 20 7.0 24 >5.0
L. pneumophila 0.21 5 > 2.0 Domingue and others 1988
Salmonella enteritidis 0.5 to 6.5 0.5 25 0.6 to ~4 Dave 1999
S. typhimurium 0.23 to 0.26a 1.67 7.0 24  4.3 Farooq and Akhlaque 1983
Pseudomonas fluorescens 0.2 to 1.2a < 0.5 5.9 25 0.9 to 5 Kim and Yousef 2000
aO3 demand-free water
bPhosphate buffer
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fects of ozone gas injection or sparging in reconditioning
poultry chiller water (Waldroup and others 1993; Diaz and
Law 1999). Effective prefiltration of chiller water prior to
ozone treatment is recommended for optimum reduction of
microbiological levels and efficient use of ozone (Sheldon
1986). Aqueous ozone also was used to decontaminate beef
and beef brisket fat (Gorman and others 1997), poultry meat
(Dave 1999), salmon (Goche and Cox 1999), apples (Achen
and Yousef 2001; McLoughlin 2000), strawberries (Lyons-
Magnus 1999), lettuce (J-G Kim and others 1999a) and broc-
coflower (Hampson and Fiori 1997). Microbial studies typi-
cally show 2-logs reduction of total counts and significant
reduction of spoilage and potentially pathogenic species
most commonly associated with fruit and vegetable prod-
ucts.

Some researchers treated raw ingredients with ozone be-
fore processing of food. M-J Kim and others (1993) treated
various spices, used to prepare kimchi, with gaseous ozone
and improved the fermentation of the final products. In our
laboratory, K-G Kim and others (2001) used gaseous ozone
injection to decontaminate the ingredients of fruit juices
such as high-fructose corn syrup. The researchers speculat-
ed that ozone treatment of ingredients rather than final juice
products can reduce ozone usage and minimize the damage
to the sensory quality of the final product. Naitoh and others
(1989) reported that the treatment of wheat flour with gas-
eous ozone inhibited microbial growth in namamen prod-
ucts and increased their storage life.

Gaseous ozone can be used during storage of foods.
Ozone was tested to prevent the growth of surface contami-
nants on meat (Greer and Jones 1989), grapes (Sarig and oth-
ers 1996), and broccoli florets (Zhuang and others 1996). Low
concentration (< 1 ppm) and long contact time (several days)
were needed to inhibit microbial growth during storage.
Aqueous ozone was also used to treat packaging and food-
contact materials (Khadre and Yousef 2001a). Combinations
of ozone with other oxidants such as hydrogen peroxide
were also used to sanitize packaging films (Gardner and
Sharma 1998), a confectionery plant (Naitoh 1989), and
hatchery equipments (Whistler and Sheldon 1989). Ozone
decreased surface flora by ~ 3 log10-units when tested in
wineries for barrel cleaning, tank sanitation, and clean-in-
place processes (Hampson 2000).

In spite of its efficacy against microorganisms both in the
vegetative and spore forms, ozone is unlikely to be used di-
rectly in foods containing high-ozone-demand materials,
such as meat products. Applying ozone at doses that are
large enough for effective decontamination may change the
sensory qualities of these products. Additionally, microor-
ganisms embedded in product surfaces are more resistant to
ozone than those readily exposed to the sanitizer. Applica-
tion of aqueous ozone on products having smooth intact
surfaces with low ozone demand (for example, fruits and
vegetables) produced promising results (Achen and Yousef,
2001; Kim and others 1999a). Application methods, however,
must assure direct contact of ozone with the target microbi-
al cells. A variety of methods have been used to accomplish
this, including stirring, pumping, flumming, bubbling, soni-
cation, abrasion, and pressure washing.

Microorganisms for measuring ozone efficacy
The efficacy of a sanitizer in food processing is ideally

tested by inoculating targeted microorganisms (spoilage or
pathogenic) on the surface of food, equipment, or food-con-
tact surface, and treating these surfaces with the sanitizer at

Different AOPs vary in efficacy. Arselan and others
(1999) found that ozone at pH 11.5 was more effective than a
combination of H2O2/O3 at pH 7.5 for decreasing color in
dyehouse wastewater and removing dissolved organic com-
pounds. Cortes and others (2000) found that O3/catalyst
(Fe2+, Fe3+ and Mn2+) combination was more effective than
O3/high pH for the elimination of chlorobenzenes, which are
stable nonbiodegradable and toxic substances, in industrial
wastewater. Other researchers disputed the efficacy of AOPs.
Rajala-Mustonen and Heinoen-Tanski (1995) reported that
ozone alone in tap water was much more effective in inacti-
vation of coliphages than were AOPs using UV light with hy-
drogen peroxide. Harakeh and Butler (1985) found that 0.2
ppm ozone at pH 4 gave significantly higher reduction of po-
liovirus than at pH 7.2 or 9. In the presence of 0.5 M sodium
bicarbonate, an ozone decomposition inhibitor, viral sensi-
tivity to ozone increased about 10-fold at each pH value test-
ed. Hence, enhancing ozone efficacy through generation of
AOPs seems theoretically feasible but still lacks sufficient
proof for practical application in foods.

Ozone-Chlorine. Ozone seems to possess an activity that
is lacking in chlorine; it alters membrane permeability. This is
evident from the work of Gyurek and others (1996), who
found that free chlorine is relatively ineffective against
Cryptosporidium parvum oocysts unless it is preceded by a
small dose of ozone. They assumed that preozonation alters
the permeability of the oocyst membranes, thus allowing
free chlorine to penetrate and cause a significant inactivation
of the oocysts.

Ozone-pulsed electric field. Unal and others (2001) stud-
ied inactivation of E. coli O157:H7, Listeria monocytogenes,
and Lactobacillus leichmannii by combinations of ozone
and pulsed electric field (PEF). Cells were treated with 0.25 to
1.00 mg ozone/mL cell suspension, PEF at 10 to 30 kV/cm, or
selected combinations of ozone and PEF. Treatment of L. le-
ichmannii with PEF (20 kV/cm), after exposure to 0.75 and
1.00 mg/mL ozone, inactivated 7.1, and 7.2 log10 CFU/mL,
respectively; however, ozone at 0.75 and 1.00 mg/mL and PEF
at 20 kV/cm inactivated 2.2, 3.6, and 1.3 log10 CFU/mL, re-
spectively. When E. coli O157:H7 and L. monocytogenes were
treated with ozone and PEF, less pronounced synergistic bac-
tericidal effects were observed. Ohshima and others (1997)
also reported a synergistic effect of the simultaneous appli-
cation of ozone and PEF on E. coli. Inspecting the data of
Ohshima and others (1997), however, we found that ozone
and PEF combinations, as tested in this study, had an addi-
tive rather than a synergistic action.

Ozone application in food processing
Ozone is one of the most effective sanitizers known, yet it

leaves no hazardous residues on food or food-contact sur-
faces. The precursors for industrial production of ozone
(that is, O2 or H2O) are abundant and inexhaustible. Ozone
treatment requires no heat and hence saves energy. Ozone
must be produced on-site; this leads to considerable savings
in the costs of transporting and storing sanitizers. The initial
cost of ozone generators may be of concern to small proces-
sors; however, long-term application may justify these costs.
The economics of ozone application is beyond the scope of
this review; but the fact that ozone has been and is still being
used in Europe and some places in the United States suggests
that it is reasonably economical.

Products tested
Several investigators demonstrated the microbicidal ef-

Microbiological aspects of ozone . . .
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conditions that simulate normal processing. Alternatively, an
indicator (surrogate) microorganism with resistance to the
sanitizer that is similar or greater than that of the targeted
microorganism may be used. The indicator is ideally similar
biologically to the targeted microorganism, but it should not
be pathogenic if the study is carried out in the processing fa-
cilities. Since sanitization commonly targets a variety of mi-
croorganisms, an indicator with the greatest resistance to the
sanitizer is preferable in these challenge studies.

Clostridium sporogenes PA 3679 has been effectively used
as a surrogate to C. botulinum in heat inactivation studies,
but Bacillus stearothermophilus is also used (Russell 1982).
L. innocua has been used to study treatments that target L.
monocytogenes (Gervilla and others 1997). Selected B. subti-
lis strains are used in determining the efficacy of H2O2 and
heat in aseptic fillers (Anonymous 1995 and 1999). Very little
research has been done in the quest for the ideal microor-
ganism to use in measuring ozone efficacy.

In a comparative study, Khadre and Yousef (2001b) found
that resistance of Bacillus spp. spores to ozone was highest
for B. stearothermophilus and lowest for B. cereus. Spores of
B. subtilis var niger ATCC 9372 are used as indicators in dry
heat and ethylene oxide sterilizations (Anonymous 1995 and
1999), but in our study these spores were sensitive to ozone.
Hence, we suggest using B. stearothermophilus spores in
testing the efficiency of sanitization by ozone.

Residual ozone and process efficacy.
During treatment of food, ozone may desolubilize, de-

compose, or react with food constituents and targeted mi-
croorganisms. The rapid reaction and degradation of ozone
diminish the residuals of this sanitizer during processing. The
lack of residuals may limit the processor’s ability for in-line
testing of efficacy; this is an often-cited disadvantage of using
ozone as a disinfectant. Stalder and Klosterkoetter (1976)
clearly illustrated this problem—they observed that 1.5 mg/
mL ozone treatment kept water sterile for greater than 1 mo
with no detectable residuals. However, passage of this water
through a 12 m-long pipeline led to recontamination and
considerable growth of microorganisms. Lack of residual
ozone in the water led to this recontamination problem.
Food is packaged after processing; therefore, product recon-
tamination is less likely in food than in drinking water. Lack
of residues, however, minimizes a processor’s ability to mon-
itor ozone level in wash water as an important critical con-
trol point within a hazard analysis and critical control point
(HACCP) plan.

Validation
Process validation is a practice that accompanies intro-

duction of a new processing technology or unit operation.
Results of validating ozone use in drinking water at the Neuil-
ly-sur-Marne plant in France has been published (Bablon
and others 1991b). This plant produces 600,000 m3/d of wa-
ter from the Marne River near Paris. The filtered water is dis-
infected with ozone at an average dose of 1.5 mg/mL for an
average contact time of 12 min. Ozone is diffused through
porous plates to contact chambers. The residual ozone con-
centration at the end of the contactors is 0.4 mg/mL. A post-
disinfection dose of chlorine is added to give a residual chlo-
rine concentration of 0.4 mg/mL in the water leaving the
plant and entering the distribution system. The bacteriologi-
cal results of samples taken during 1988 to monitor bacterial
levels before and after ozonation indicate a substantial re-
duction in microbial population. Fecal streptococci were not

detected in water samples (100 mL), total and fecal coliform
bacteria decreased > 4 and 3 log10-units, respectively, and
heterotrophic plate count bacteria were reduced 2 to 3
log10-units.

Sheldon and others (1985) tested the effects of ozone on
the microbiological characteristics of spent poultry prechill-
er water (95 L obtained from a poultry plant and tested in a
pilot plant-size ozone contactor). Ozone was generated at a
rate of 292 ppm per min for 60 min. After ozonation, the to-
tal aerobic population decreased ~7 log10-units, the coliform
count decreased > 3 log10-units, and the fecal coliforms, E.
coli and Salmonella, were not detected. These authors con-
cluded that ozone qualifies for recycling poultry chiller water
under the USDA’s guidelines. In 1993, Waldroup and others
reported their evaluation of a prototype water recycling ozo-
nation system installed in a commercial turkey poultry pro-
cessing facility over a 4-mo period. They found similar re-
sults like those of Sheldon and others (1985) and were able to
obtain USDA approval for this system for recycling poultry
chiller water in 1991. Tests for validation of the use of ozone
for red meat processing (Greer and Jones 1989; Gorman and
others 1997) have given modest results, and more research is
needed in this area probably involving ozone in combination
with other factors such as hot water or hydrogen peroxide.

Monitoring ozone in work environment and
personnel safety

Ozone toxicity. Low concentrations of ozone (~0.1 mg/L)
cause irritation to the nose, throat, and eyes (Witheridge and
Yaglou 1939). Thorp (1950) indicated that an hour exposure
to ozone concentrations of 2, 4, 15, and 95 mg/L induces
symptomatic, irritant, toxic, and irreversible lethal effects,
respectively, in humans. The human lung is the primary tar-
get of ozone gas. Initially, there is pulmonary edema accom-
panied by capillary hemorrhage and inflammation of the res-
piratory tract. On prolonged exposure, ozone may cross the
alveoli, causing damage to blood cells and serum proteins
(Buckley and others 1975). Ozone appears to react with sub-
stances in the water supply, such as humic acids, to form nu-
merous disinfection by-products which cause minor toxico-
logical reactions, if any (Bablon and others 1991a).

Personnel safety. Safety-of-use is of prime importance for
the practical application of ozone in food processing. Sys-
tems for ozone detection and destruction in addition to res-
pirators are essential for the safety of workers in food pro-
cessing facilities. An ultraviolet analyzer equipped with a
large measuring cell adapted to a range of 0.01 to 100 ppm
by volume (0.02 to 200 mg/m3 NTP) must be installed in
ozonation rooms at intervals covering the ozone gas distri-
bution pipes, contactor access galleries, and at the ozone de-
struction point. The analyzer must trigger both a displayed
and acoustic warning signal as soon as the ozone content in
the ambient air exceeds 0.1 ppm (0.2 mg/m3 NTP) (Damez
and others 1991).

The off-gas from the plant must pass through a thermal
or catalytic ozone destructor. A continuous ozone analyzer
that functions within a range of the standard of 0.1 ppm by
volume (0.2 mg/m3 NTP) must be fitted to the air line leaving
the destructor. Any overshooting of this value will trigger a
general alarm (Damez and others 1991). The reason for
ozone destruction is to protect personnel, equipment, struc-
tural components, and the general environment from expo-
sure to high levels of ozone.

According to U.S. regulations (CFR 1997), an individual
must not be exposed to a concentration of ozone higher

Microbiological aspects of ozone . . .
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than: (a) 0.1 ppm by volume (0.2 mg/m3 NTP), on an 8-h/d
basis, of a 40-h work wk; and (b) 0.2 ppm by volume (0.4 mg/
m3 NTP), as a limit for an exposure time of 10 min. Further-
more, protective canister-type respirators must be kept
available. There should be plans for remedial action in case
of accidents, and response procedures for accidental ozone
inhalation and training of personnel covering the nature and
dangers of ozone, precautions, and first aid for ozone inha-
lation.

Conclusion

OZONE IS A POTENT SANITIZER WITH PROMISING APPLICA-
tions in the modern food industry. The sanitizer is effec-

tive against a wide spectrum of microorganisms, and it can
be used in an environment-friendly manner. Stability and ef-
ficacy of ozone at chilling temperatures constitute attractive
savings to the industry which is already burdened by rising
energy costs.

Chlorine and hydrogen peroxide are probably the most
commonly used sanitizers in the food industry. These sani-
tizers have been used successfully to decontaminate pro-
cessing environment, equipment surfaces, and occasionally
the surfaces of solid foods. Their drawbacks, however, have
prompted the quest for more effective and economical sani-
tizers. Currently, ozone is the most likely alternative to chlo-
rine and hydrogen peroxide in food applications. Transition
from traditional sanitizers to ozone requires a great under-
standing of its benefits and limitations and realistic expecta-
tions from the alternative sanitizer. Further research is still
needed to explore new applications for ozone and to best
utilize the unique features of this sanitizer.
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